Bibliography

[Ruehle:2009.a]
  1. Rühle and C. Junghans and A. Lukyanov and K. Kremer and D. Andrienko, Versatile Object-oriented Toolkit for Coarse-graining Applications, J. Chem. Theor. Comp., 2009, https://dx.doi.org/10.1021/ct900369w

[Lyubartsev:1995]

Lyubartsev, Ap And Laaksonen, A, Calculation Of Effective Interaction Potentials From Radial-Distribution Functions - A Reverse Monte-Carlo Approach, Phys. Rev. E

[Tschoep:1998]

Tschöp, W and Kremer, K and Batoulis, J and Burger, T and Hahn, O, Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates, Acta Polymerica

[Reith:2003]

Reith, D and Pütz, M and Müller-Plathe, F, Deriving effective mesoscale potentials from atomistic simulations, J. Comp. Chem., https://dx.doi.org/10.1002/jcc.10307

[Izvekov:2005]

Izvekov, S and Voth, GA, Multiscale coarse graining of liquid-state systems, J. Chem. Phys., https://dx.doi.org/10.1063/1.2038787

[Noid:2008.1]

Noid, W G and Chu, J and Ayton, G S and Krishna, V and Izvekov, S and Voth, G and Das, A and Andersen, H C, The multiscale coarse graining method. 1. A rigorous bridge between atomistic and coarse-grained models, J. Chem. Phys.

[gromacs4]
  1. Chem. Theo. Comp., 2008, https://dx.doi.org/10.1021/ct700301q

[Murtola:2007]

Murtola, T and Falck, E and Karttunen, M and Vattulainen, I, Coarse-grained model for phospholipid/cholesterol bilayer employing inverse Monte Carlo with thermodynamic constraints, J. Chem. Phys., https://dx.doi.org/10.1063/1.2646614

[Wang:2009]

Wang, H and Junghans, C and Kremer, K, Comparative atomistic and coarse-grained study of water: What do we lose by coarse-graining?, Eur. Phys. J. E, https://dx.doi.org/10.1140/epje/i2008-10413-5

[Fritz:2009]

Fritz, Dominik and Harmandaris, Vagelis A. and Kremer, Kurt and van der Vegt, Nico F. A., Coarse-Grained Polymer Melts Based on Isolated Atomistic Chains: Simulation of Polystyrene of Different Tacticities, Macromolecules, 2009

[Ganguly:2012]

Ganguly, P. and Mukherji, D. and Junghans, C. and van der Vegt, Nico F. A., Kirkwood-Buff coarse-grained force fields for aqueous solutions, J. Chem. Theor. Comp., 2012, https://dx.doi.org/10.1021/ct3000958

[ruhle2011hybrid]

Rühle, Victor and Junghans, Christoph, Hybrid Approaches to Coarse-Graining using the VOTCA Package: Liquid Hexane, Macromolecular Theory and Simulations, 2011

[mashayakrelative]

Mashayak, SY and Jochum, Mara N and Koschke, Konstantin and Aluru, NR and Rühle, Victor and Junghans, Christoph, Relative entropy and optimization-driven coarse-graining methods in VOTCA, Plos One, 2015, https://dx.doi.org/10.1371/journal.pone.0131754

[Shell2008]

Shell, M Scott, {The relative entropy is fundamental to multiscale and inverse thermodynamic problems.}, The Journal of chemical physics

[Wu2005]

Wu, Di and Kofke, David A., {Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation.}, The Journal of chemical physics

[rudzinski_coarse-graining_2011]

Rudzinski, Joseph F. and Noid, W. G., Coarse-graining entropy, forces, and structures, The Journal of Chemical Physics, 2011

[Chaimovich2011]

Chaimovich, Aviel and Shell, M. Scott, {Coarse-graining errors and numerical optimization using a relative entropy framework}, The Journal of Chemical Physics

[lyubartsev2010systematic]

Lyubartsev, Alexander and Mirzoev, Alexander and Chen, LiJun and Laaksonen, Aatto, Systematic coarse-graining of molecular models by the Newton inversion method, Faraday discussions, 2010

[lu_coarse-graining_2014]

Lu, Jibao and Qiu, Yuqing and Baron, Riccardo and Molinero, Valeria, Coarse-Graining of {TIP}4P/2005, {TIP}4P-Ew, {SPC}/E, and {TIP}3P to Monatomic Anisotropic Water Models Using Relative Entropy Minimization, Journal of Chemical Theory and Computation, 2014

[deOliveira:2016]

de Oliveira, Tiago E. and Netz, Paulo A. and Kremer, Kurt and Junghans, Christoph and Mukherji, Debashish, C–IBI: Targeting cumulative coordination within an iterative protocol to derive coarse-grained models of (multi-component) complex fluids, The Journal of Chemical Physics, 2016

[Kirkwood:1951]

Kirkwood, John G. and Buff, Frank P., The Statistical Mechanical Theory of Solutions. I, The Journal of Chemical Physics, 1951

[Delbary:2020]
  1. Delbary, M. Hanke and D. Ivanizki, A generalized Newton iteration for computing the solution of the inverse Henderson problem, Inverse Probl. Sci. Eng., 2020, https://dx.doi.org/10.1080/17415977.2019.1710504

[Bernhardt:2021]
    1. Bernhardt, M. Hanke and N. F. A. van der Vegt, Iterative integral equation methods for structural coarse-graining, J. Chem. Phys., 2021, https://dx.doi.org/10.1063/5.0038633

[lammps]
    1. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in ‘t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott amd S. J. Plimpton, LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comp. Phys. Comm., 271 (2022) 10817, https://doi.org/10.1016/j.cpc.2021.108171